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An important criterion in the development of modern aeroengines is the identification
of the dominant noise sources under typical aircraft take-off and approach conditions,
and also in ground-based tests in which the engine is stationary. In this paper, we
develop a theoretical model for unsteady distortion noise, which results from the
interaction of ingested atmospheric turbulence with the rotating fan, with a view
to providing a better understanding of the important physical mechanisms in this
particular aspect of sound generation. The theory, developed in the frequency domain,
is applicable for any arbitrary spectral form of atmospheric turbulence upstream of
the fan, and as a simple model we take the von Kármán spectra for isotropic
turbulence. The key fluid dynamical process in unsteady distortion is the deformation
of turbulent eddies into long, narrow filaments as they enter the engine, due to the
strong streamtube contraction experienced by the steady, non-uniform mean flow
generated by the fan. Simple models of the steady flow fields are provided for both
open and ducted rotor geometries. The distorted turbulent field at the fan face can be
obtained using rapid distortion theory, and considerable simplification is made here
by noting that the number of blades in typical aeroengine fans is large, allowing the
application of asymptotic analysis and the derivation of closed-form expressions for
those parts of the turbulence spectrum at the fan face which dominate the radiation.
The unsteady forces exerted on the rotating fan blades are then calculated via a
strip-theory approach. The resulting sound scattered to the far field is then evaluated
using asymptotic theory for open and ducted rotors. Results are presented in the form
of frequency spectra for the turbulent field at the fan face, the blade forces and the
radiated sound for typical testing and aircraft operating conditions. High tonal noise
levels are obtained under static conditions, whereas the sound is generally broadband
in flight. The dependence on turbulence parameters such as the integral lengthscale
is highlighted.

1. Introduction
The problem of noise generation by modern aeroengines is of great importance to

the surrounding environment, and increasingly severe mandatory noise certification
levels have been imposed in many of the world’s airports. A considerable amount of
time and money is currently being expended by engine manufacturers in measuring
and attempting to reduce the undesirable levels of sound. The typical noise certification
conditions are during aircraft take-off and approach; however, it is both highly
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Figure 1. Engine configuration illustrating the inflow contraction and distortion of a
turbulent eddy.

impractical and expensive to analyse the dominant noise sources in flight, and such
noise testing must therefore be carried out for stationary engines at ground level. A
difficulty exists in ground-based (static) tests since the dominant noise sources are
different to those obtained in flight, and therefore further modifications must be made
to the testing apparatus in order to realistically simulate flight and hence predict the
expected noise levels under typical noise certification conditions. In static tests it has
been deduced (e.g. Hanson 1974) that the dominant noise component arises from
the interaction between ingested atmospheric turbulence and the engine fan which
rotates at subsonic speeds, even when ambient wind speeds are low. The atmospheric
turbulence component at the fan is termed unsteady distortion and in this paper we
focus on the understanding of the physical processes that are responsible for the noise
generated due to unsteady distortion–rotor interaction, by developing a theoretical
prediction scheme.

The key physical mechanism in the unsteady distortion process is the elongation
of turbulent eddies as they are convected towards the engine by the steady but non-
uniform mean flow. A strong streamtube contraction exists immediately upstream
of the fan, especially in static conditions, and it is this non-uniform inflow which
causes the streamwise lengthscale of the turbulent eddies to increase significantly
and the transverse scale to correspondingly decrease. The long, narrow filaments are
accelerated through the fan, where they are consequently sliced a number of times
by the fan blades. The repeated chopping produces an unsteady pressure distribution
on the blades, which in turn generates sound which is scattered to the far field.
In measured sound spectra, the peak noise levels occur at harmonics of the blade
passing frequency (BPF), with the fundamental tone being of the highest magnitude.
The engine geometry and an example of the distortion of a turbulent eddy are
displayed in figure 1.

In flight, the streamtube contraction in the mean flow is expected to be far weaker
than in static conditions (Cumpsty & Lowrie 1974), and hence the effects of unsteady
distortion will be less significant. In fact, the dominant sound source in flight is
thought to arise from ‘steady distortion’, i.e. an additional steady flow field such as that
generated by non-uniformities (such as droop) in the engine inlet. Since the noise levels
need to be quantified in flight, it is clear that the BPF tones obtained in static tests
from unsteady distortion are highly undesirable. Various artificial mechanisms have
therefore been introduced to remove the large-scale unsteady distortion components
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at the fan face; however, the capability of such mechanisms to accurately produce
a similar intake flow at the fan to that obtained in flight is still open to question.
Further investigation of the effects of unsteady distortion under both static and flight
conditions is therefore necessary, and since there are limits on how much knowledge
can be gained by simply using practical measurements, a theoretical prediction scheme
of the type to be described here for unsteady distortion would greatly enhance the
overall level of knowledge in several aspects. It is important to develop a better
understanding of the main fluid dynamical processes that occur upstream of the fan,
with regard to the inflow contraction and distortion of the incoming turbulent eddies,
and the nature of the acoustics in the far field.

The subject of noise generation by the interaction between turbulence and a
rotating fan has received considerable attention in the past thirty years. One of the
first works was by Sharland (1964), who developed a simple theory and experiments
to estimate the noise generated by the interaction between turbulent flow and an
airfoil. Subsequent improvements to the analytical and experimental work were made
by Dean (1971). Alternative methods were developed by Mugridge (1970), Mani
(1971) and Amiet (1975), which calculate the radiated sound from a combination
of the inflow turbulence spectrum and the response function for a rectilinear airfoil.
The first theoretical treatment of turbulence interacting with a rotating airfoil was
developed by Homicz & George (1974), who calculated the airfoil pressures using a
low-frequency response function and subsequently evaluated the pressure field of a
rotating dipole source. Amiet (1977) used a different approach to calculate the sound
field from a rotating blade source, by performing the rectilinear motion analysis
of Amiet (1975) to yield expressions for the spectra at the fan. This model was
particularly suited to high frequencies, whereas that of Homicz & George was only
applicable to low frequencies.

The above models all characterized the turbulence at the fan as isotropic, i.e. the
lengthscales were taken to be equal in both the streamwise and transverse directions.
Cumpsty & Lowrie (1974) and Hanson (1974) were amongst the first to attempt to
include the elongation of turbulent eddies (and hence their anisotropic nature) as they
are drawn towards the fan. Using measurements of the turbulent flow in the inlet
and the surface pressures on the blades, Hanson developed a theoretical model that
was able to predict sound levels under static conditions. This involved a random-
pulse-modulation theory to calculate the unsteady blade forces and hence the radiated
sound arising from a statistical distribution of discrete eddies, whose characteristics
were chosen in such a way that the shape of the theoretical blade lift spectrum agreed
as closely as possible with that obtained experimentally. A more detailed theory of
fan tone noise was developed by Ganz (1980), who paid particular attention to the
modelling of free-stream turbulence (see § 2.1) and the application of rapid distortion
theory to obtain the turbulence characteristics downstream of the inflow contraction.
Ganz represented the turbulent field by a statistical distribution of distortion elements
and, using two-dimensional blade loading theory for single airfoils, the forces on the
fan and scattered sound were calculated. The most comprehensive analytical study
involving unsteady distortion theory was performed by Simonich et al. (1986, 1990)
who applied rapid distortion theory to evaluate the noise generated by a helicopter
rotor. Using an isotropic turbulence model in the free stream, Simonich et al. analysed
the evolution of the turbulence as it travels along the contracting flow towards the
rotor, under several typical helicopter operating conditions.

The conventional analytical model used to represent the evolution of the turbulent
flow as it passes through the streamtube contraction is rapid distortion theory, which
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forms an essential part of our analysis. Initial investigations on the subject of turbulent
flow in a contracting stream were conducted by Prandtl (1933) and Taylor (1935).
The now conventional rapid distortion theory approach was devised by Ribner &
Tucker (1953), and Batchelor & Proudman (1954), who treated the turbulent field
as a vorticity perturbation in the presence of a steady mean flow and hence were
able to perform a linear analysis to determine the form of vorticity components
as they travelled along contracting mean flow streamlines. Hunt (1973) extended
these works to include Lighthill’s (1956) drift time, defined by the time taken for
a fluid particle to traverse along a mean flow streamline from an upstream point
to a downstream point. The differences in drift time between fluid particles passing
through the flow contraction were shown by Hunt to be significant. Hunt (1978)
also published a review of the basic theory and its applicability. Goldstein (1978)
reformulated the rapid distortion theory approach by splitting the perturbation flow
field into a known vorticity field (with zero pressure perturbation) and an unknown
irrotational component, in order to derive a single equation of Poisson form for the
irrotational part, thereby providing a considerable simplification over previous studies.
In this paper, we will apply the theory of Goldstein (1978) to calculate the velocity
field of a distortion element as it passes through the contracting mean flow, and
by linearity the result will then be generalized to any arbitrary form of free-stream
turbulence.

The theory described in this paper is divided into several distinct stages, each
of which can be modified and improved in a straightforward manner, whilst still
remaining compatible with the rest of the theory. It is most convenient to work
entirely in the frequency domain, which enables spectral expressions for the upstream
turbulence, blade pressures and radiated sound to be derived. The present work
represents a significant improvement over previous unsteady distortion noise models
(e.g. Hanson 1974; Ganz 1980), in that we work directly with the upstream turbulence
spectrum, so that there is no need to prescribe an artificial distribution of discrete
eddies at the fan face to calculate the blade forces.

In § 2, the theory is developed for an open rotor. The simple model for atmospheric
turbulence which will be used throughout our theory is described, and expressions for
the non-uniform steady flow upstream of the fan are provided. The rapid distortion
theory approach formulated by Goldstein (1978) is applied to provide expressions
for the distorted field at the fan face as a summation over azimuthal modes. In
rapid distortion theory the unsteady velocity is decomposed as a sum of a vortical
component, which is given analytically, and an irrotational component which can only
be determined by solving an inhomogeneous Laplace equation; for general values
of the azimuthal order, m, this Laplace equation can only be solved numerically.
However, we show that provided the number of blades, B, in the fan is large (which is
always true in practice), then apart from at unimportant low frequencies the radiation
spectrum is dominated by contributions from those azimuthal modes with |m| close
to a non-zero integer multiple of B. For these large values of m, it turns out to
be possible to determine a closed-form expression for the irrotational part of the
distorted field, and hence for those parts of the total distorted field which dominate
the radiation. A two-dimensional theory to predict the unsteady blade response is
then applied, and spectral expressions for the forces are deduced. Finally, we calculate
the noise radiated to the far field using a Green’s function approach and asymptotic
theory. Extensions to our theory for a ducted rotor are presented in § 3. The steady
flow into a rotor surrounded by a semi-infinite cylindrical duct is evaluated using the
Wiener–Hopf technique (Noble 1958). We use the identical rapid distortion theory
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approach to that of § 2 to evaluate the distorted field at the fan face, the only main
difference being the imposition of a zero normal velocity boundary condition at
the duct wall. An estimate of the total sound propagating back upstream is also
provided using the Green’s function for a cylindrical duct. Results are presented in
§ 4 for typical engine testing conditions and in flight, for a wide range of parameters.
Frequency spectra of the distorted field at the fan face, the unsteady blade forces
and the radiated power are displayed, and the physical effects in both ground-based
testing and flight conditions are deduced. The dominant noise level is observed at the
blade passing frequency, with further peak levels occurring at higher harmonics. The
dependence on the integral lengthscale of the free-stream turbulence is highlighted,
and it is deduced that under static conditions eddies of larger lengthscale produce
far greater tonal noise, whereas those of very small lengthscales produce effects not
dissimilar to those predicted in flight conditions.

2. Formulation for an open rotor
2.1. Free-stream turbulence

In order to calculate the sound generated by the interaction of atmospheric turbulence
with the fan, the turbulent flow field at the fan needs to be quantified. However,
measured data for turbulence fields at the engine inlet or fan in static conditions
are scarce, and in-flight measurements are impractical. It is therefore necessary to
implement a realistic model of the spectrum of the atmospheric turbulence in the free
field, from which the distortion of turbulent eddies as they approach the fan can be
calculated using rapid distortion theory. A full and completely reliable description
of turbulent fields in typical atmospheric conditions is not yet available, and an
approximate model must therefore be chosen. Although atmospheric turbulence is not
truly isotropic, its one-dimensional spectra (see Goldstein 1978) exhibit characteristics
of isotropic turbulence with k−5/3 decay as the wavenumber k becomes large, and
the flow is therefore taken to be locally isotropic within our wavenumber range of
interest. It is generally agreed (e.g. Simonich et al. 1986) that the most realistic and
convenient description of isotropic turbulence is represented by the von Kármán
model. It is assumed that the flow is stationary and that the statistical properties of
the unsteady flow field do not vary during the timescales of interest. Far upstream of
the fan, the turbulent flow is also taken to be homogeneous in any horizontal plane,
which is a reasonable assumption if the terrain height does not vary rapidly with
respect to horizontal distance.

We consider a turbulence field superimposed on a free stream of velocity îU∞
at upstream infinity (where î is the unit vector in the axial direction), so that the
turbulent velocity is expressed as

u∞(x− îU∞t) , (2.1)

and we define the spatial correlation tensor in the form

R∞ij (η) =
〈
u∞i (x) u∞j (x+ η)

〉
, (2.2)

and the associated three-dimensional spectrum for the free-stream turbulence

S∞ij (k) =
1

(2π)3

∫
<3

R∞ij (η) exp(−ik · η) d3η . (2.3)

In our theory we will need to make use of the three-dimensional spectra for free-
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stream turbulence S∞ij (k) as defined in (2.3), since the spectral quantities derived
later in our analysis will be obtained in the form of integral expressions dependent
on S∞ij (k). The three-dimensional spectrum for the von Kármán model of isotropic
turbulence is then given by (Hinze 1959; Amiet 1975; Goldstein 1978)

S∞ij (k) =
55

36πL2/3

g1 u
2
∞,1 [k2δij − kikj]

(g2/L2 + k2)17/6
, (2.4)

where the constants are g1 ≈ 0.1955 and g2 ≈ 0.558. Two important parameters are
apparent in this spectral expression: the integral lengthscale of the turbulence L and

the mean square speed (i.e. the turbulence intensity) in the streamwise direction, u2
∞,1.

Throughout our analysis we will be working with an axisymmetric flow geometry,
so that the azimuthal component of the (non-uniform) mean flow is zero. We use
the subscripts 1, 2, 3 to represent quantities calculated in the Cartesian system, and
x, r, θ to represent those in the cylindrical geometry. The 1- and x-axes coincide,
and throughout this paper the quantities with these subscripts are interchangeable.
There are nine non-zero components of S∞ij (k) that describe the turbulent field in a
general flow geometry. The axisymmetric nature of the base flow considered in this
paper implies that only four such components S∞xx, S

∞
rr and S∞xr = S∞rx are required

for subsequent calculations, and our results will therefore be independent of the
azimuthal velocity components of the turbulent field.

2.2. The basic steady flow field

We now calculate the non-uniform steady flow induced by the rotating fan in the
absence of the engine duct, in order to model the flow contraction that leads to
the turbulence distortion. For the problem considered here, the flow is assumed to
be axisymmetric, and hence effects of swirl upstream of the fan are neglected. It is
therefore possible to work strictly in terms of the axial and radial coordinates x and
r, with no dependence on the azimuthal angle θ. The steady flow field U (x) possesses
axial and radial components

Ux = U∞ + u(x, r), Ur = v(x, r) (2.5)

respectively, where U∞ is the uniform free-stream axial speed at upstream infinity and
(u, v) is the induced velocity field with (u, v) → 0 as x → −∞. A simple model which
provides analytical expressions for the flow induced by a uniformly loaded actuator
disk (i.e. an infinitely bladed propeller) is presented in Hough & Ordway (1965) and
extended by Conway (1995). Expressions for the steady velocity components (u, v)
and the streamfunction Ψ (x, r) are given in Appendix A. The use of an actuator disk
to represent the fan is a very common device in turbomachinery theory, and captures
all the essential features of the fan flow.

The calculated basic flow streamlines in typical static and flight conditions are
displayed in figures 2(a) and 2(b) respectively. In both examples the same uniform
flow speed Uf is prescribed at the fan face, since in practice the mean flow in static
testing conditions is adjusted to simulate flight as closely as possible. It is observed
that under static conditions the streamtube radius is approximately 10 times the order
of that of the actuator disk and the contraction is therefore very strong, particularly
near the tip of the actuator disk. Downstream of the actuator disk, the flow becomes
parallel as required. In flight, the streamtube contraction is far weaker, and the steady
flow upstream is parallel up to the close vicinity of the actuator disk. The effects
of these representative flow fields on the distortion of the turbulent field will be
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Figure 2. (a) Streamlines for the basic steady flow induced by an actuator disk of unit radius
(situated at x = 0) under typical static conditions. (b) Basic flow streamlines for an open rotor
under typical aircraft approach conditions. Flow is from left to right.

calculated in the next subsection. It should be noted that the case of U∞ = 0 is
of little practical relevance and is not considered in this paper, so that a non-zero
upstream flow is present in both cases shown in figure 2.

2.3. Rapid distortion theory

One of the most important processes in the interaction of a rotating fan with convected
turbulence is the distortion of the turbulent field as it is drawn towards the fan, and
this depends upon the strength of the streamtube contraction in the basic steady flow.

We consider an arbitrary turbulence field of the form u∞(x − îU∞t), convected by a
steady, axisymmetric mean flow U (x) as presented in § 2.2 for an unducted fan (and
as will be seen later in § 3.1 for a ducted fan). The flow is inviscid and incompressible
(since the flight Mach number at aircraft approach is in the very low subsonic range),
and we look for small unsteady perturbations, denoted by u(x, t), p′(x, t), ρ′(x, t), to the
basic steady flow velocity, pressure and density U (x), p0, ρ0.

The mean flow U (x) is taken to be free of swirl upstream of the rotor throughout
the analysis, and we can therefore work in an axisymmetric geometry, and introduce
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a new cylindrical coordinate system X = (X,R,Θ), in which the quantities X −U∞t,
R and Θ are constant along the streamlines of the basic flow. The quantities X and R
are the new ‘axial’ and ‘radial’ coordinates respectively, and Θ is identically θ in our
axisymmetric system. The associated mean flow streamfunction is denoted by Ψ (x).
An important quantity in the analysis is Lighthill’s (1956) drift function ∆(x); the
difference in ∆(x) between any two points on a streamline represents the time taken
for a fluid particle to travel between the two positions, and it is defined by

∆(x, r) =
x

U∞
+

∫ x

−∞

[ 1

Ux(x′, rs(x′, R))
− 1

U∞

]
dx′, (2.6)

where rs(x
′, R) represents the equation of the streamline with constant value of R

along it. The coordinates in our new system are given by

X = U∞∆ , R =

(
2Ψ

U∞

)1/2

, Θ = θ . (2.7)

Now that we have constructed the basic flow field and the associated coordinate
transformation, we proceed to apply the main result of Hunt’s (1978) and Goldstein’s
(1978) theory. It has been shown that the general solution to the linearized momentum
equation can be written in the form

p′ = −ρ0

D0φ

Dt
, (2.8)

u = ∇φ+ u(I) , (2.9)

where the function φ(x, t) satisfies the inhomogeneous equation

∇2φ = −∇ · u(I) , (2.10)

and u(I)(x) (using the notation of Goldstein 1978) is given by

u
(I)
i (x) =A(X − îU∞t) ·

∂X

∂xi
, (2.11)

whereA is an arbitrary vector function. The quantity u(I)(x) is taken as known in the
analysis, and it represents the vortical part of the disturbance field, with no associated
pressure fluctuations. The irrotational part of u can be evaluated as a gradient of the
velocity potential φ(x, t).

If we have a general incident disturbance field u∞(x − îU∞t) at upstream infinity,
then by linearity the solution of (2.10) can be obtained by superposing solutions to
the much simpler problem for an incident harmonic gust of form

u∞ = a exp
{

ik · (x− îU∞t)
}
, (2.12)

where k = (k1, k2, k3) is the wavenumber vector at upstream infinity, and hence we
take

A(X ) = a exp(ik · X ) . (2.13)

Even with this simplification, it is not possible to solve (2.10) analytically to determine
φ(x, t) in closed form, and in general this would have to be completed numerically.
However, we find that (2.10) can be solved asymptotically in the entirely realistic limit
of large blade number, B; the use of large-B asymptotics in propeller aeroacoustics
is fully described in Parry & Crighton (1989) and Crighton & Parry (1991). In this
limit it turns out that for the radiation frequencies of most practical interest (but not
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for the low frequencies, which are less important), the wavenumber vector k and the
distortion vector X satisfy

|k| � 1

|X | , (2.14)

and this point will be justified fully at the end of this subsection and at the end of
§ 2.5. This then allows us to write down the asymptotic solution

φ(x, t) =
ilm
|l|2

∂Xj

∂xm
aj exp

{
ik · (X − îU∞t)

}
(2.15)

where l is the local, distorted wavenumber

li = km
∂Xm

∂xi
, (2.16)

and to leading order in |k| it is easy to see that this is indeed the solution (2.10)
(essentially because to obtain the leading-order terms one differentiates the phase of
φ(x, t) and not the amplitude). It then follows that the distorted field in this limit is
given by

ui(x, t) = Aij aj exp
{

ik · (X − îU∞t)
}

(2.17)

where

Aij(x; k) =

(
δim −

lilm

|l|2

)
∂Xj

∂xm
. (2.18)

The distorted field (2.17) is now rewritten in cylindrical coordinates as a sum of
its circumferential harmonics, using Formula 8.511.4 of Gradshteyn & Ryzhik (1980).
Since Aij is not a function of θ (i.e. there is no rotation of the wavenumber vector
due to the radial gradient of X), it can be expressed in the form

ui(x, t) =

∞∑
m=−∞

Bmij (x; k) aj exp

(
ik1(X −U∞t) + im

(
θ − tan−1

(
k3

k2

)
+
π

2

))
, (2.19)

where

Bmij (x; k) = Aij(x; k) Jm(krR) (2.20)

and kr = (k2
2 +k2

3)1/2 is the radial wavenumber. We therefore have an expression which
describes the alteration of the amplitude and phase of the disturbance as it passes
through the inflow contraction towards the fan. We note that expression (2.19) decays
like r−1/2 at infinity, since R → r far upstream and |Jm(z)| ∝ [2/(πz)]1/2 as |z| → ∞.

The distorted wavenumber vector l(x, r) ≡ (lx, lr) contains the important infor-
mation about the strength of the distortion and its effect on the axial and radial
components of the wavenumber k ≡ (kx, kr) of the harmonic disturbance at upstream
infinity. From the definition (2.6) of the drift function, it would appear most conve-
nient to express ∆ as a function of x and R, and from (2.16) we obtain expressions
for the axial and radial components of l(x, r) in the form

lx =

(
kr + kx

∂

∂R
(U∞∆)

∣∣∣∣∣
x

)
∂R

∂x

∣∣∣∣∣
r

+ kx
∂

∂x
(U∞∆)

∣∣∣∣∣
r

,

lr =

(
kr + kx

∂

∂R
(U∞∆)

∣∣∣∣∣
x

)
∂R

∂r

∣∣∣∣∣
x

.


(2.21)
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The streamfunction and drift function, together with their axial and radial derivatives,
must be evaluated using (2.6) and (2.7). It is clear from (2.7) that R → r at upstream
infinity for each streamline, since (u, v) tends to zero and therefore Ψ ∼ 1

2
U∞r

2. It is
easy to see from (2.7) that the derivatives of the streamfunction coordinate R take
the form

∂R

∂r

∣∣∣∣∣
x

=
rUx

RU∞
,

∂R

∂x

∣∣∣∣∣
r

= − rUr

RU∞
, (2.22)

and the partial x-derivative of the coordinate X(x, R) is also straightforward to
evaluate, and from (2.6) is given by

∂

∂x
(U∞∆)

∣∣∣∣∣
R

=
U∞

U∞ + u(x, r)
. (2.23)

However, the most complicated derivative in (2.21) is the R derivative of ∆, and the
derivation of an analytical expression is given in Appendix B. Its final form is

∂

∂R
(U∞∆)

∣∣∣∣∣
x

= U2
∞ R(x, r)

∫ x

−∞

−r−5/2
s ∂f/∂rs + 3

2
r
−7/2
s f(x′, rs)[

U∞ + u(x′, rs)
]3

dx′ , (2.24)

where f(x′, rs) and ∂f/∂rs are given in Appendix B. It is noteworthy that the drift
time varies significantly along the blade span in static conditions, and hence the
expression (2.24) cannot be neglected. However, the drift possesses little significant
radial variation in flight conditions.

It is now possible to evaluate the frequency spectrum of the turbulence after the
streamtube contraction, in terms of the spectrum of the free-stream turbulence. We
extend (2.12) to an arbitrary upstream turbulence field by linear superposition, and
after a considerable amount of algebra we obtain the spectrum tensor averaged over
all azimuthal angles in the simple form

Smij (x;ω) =
4π2

U∞

∫ ∞
0

Bmik(x; k) Bmjl (x; k) S∞kl (k) kr dkr , (2.25)

in which the frequency ω is related to the axial wavenumber kx by

ω = kx U∞ . (2.26)

Examples of the spectra for the turbulent field at the fan face will be presented and
discussed in § 4.2. The derivation of (2.25) is presented in Appendix C, and similar
manipulations are performed in §§ 2.4 and 2.5 to calculate the spectra of the unsteady
blade forces and the radiated power.

At this point we are now able to justify our assumption (2.14) that |k| � 1/|X |. We
first note that the number of blades, B, in typical aeroengine fans is large (usually
between 20 and 30). Moreover, it will be seen at the end of § 2.5 that the far-field
radiation spectrum is dominated by contributions from azimuthal harmonics of the
incident field whose order, m, is equal to a negative integer-multiple of B (i.e. in the
notation of § 2.5, m = −lB with l = 0, 1, 2, ..), and that the azimuthal mode m only
then makes a significant contribution to the radiation spectrum for frequencies in
the neighbourhood of ω = lBΩ, where Ω is the shaft rotation frequency. The case
l = 0 (and hence m = 0) therefore corresponds to low frequencies, which are of little
practical interest and can be ignored. We then need only consider the cases l = 1, 2, ...,
and since B is large it follows that for the azimuthal modes of interest |m| is large
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as well. If we now consider the evaluation of the integral in (2.25) for large |m|, it
has been shown in a related problem by Crighton & Parry (1991) that the integral
is dominated by contributions from the neighbourhood of the value of kr for which
the argument, krR, of the Bessel function in (2.20) is equal to its order, m, i.e for
wavenumbers k such that

krR = |m| � 1 . (2.27)

It therefore follows that

|k| = (k2
r + k2

x)
1/2 � 1

|X | =
1

(R2 +U2
∞∆

2)1/2
, (2.28)

which is exactly the condition used in obtaining φ(x, t) in (2.15). It must therefore
be emphasized that the expressions for Smij (x;ω) given in this section are only valid
for large values of |m|, but that is precisely what will be required for our radiation
calculations; determination of the turbulence spectrum for small m would require a
numerical solution of (2.10), but that seems to be of less practical importance and
need not be considered further here.

2.4. Calculation of blade forces

Now that the distorted unsteady velocity field at the fan face has been evaluated we
are in a position to calculate the unsteady forces on the fan blades resulting from
the interaction between the turbulence and the fan – we again restrict attention to
the large values of |m| for which the theory in the previous subsection has been
developed. We use the mathematical formulation of Smith (1972) by implementing
the numerical subroutine linsub (developed by Whitehead 1987) to calculate the
blade response to an incoming vortical perturbation. An expression for the spectrum
of the blade forces is then deduced, and we also derive the unsteady forcing term in
the governing equation for the sound radiated to the far field, the solution of which
will be described in § 2.5.

The reader is referred to Smith (1972) for the full details of the formulation; we
need only describe the key features here. A number of assumptions are made, each
of which can be justified under typical fan operating conditions. The flow is taken
to be subsonic at each radial station, i.e. the mean flow Mach number relative to
the blade, Mr < 1, where Mr = (M2

x + z2M2
t )

1/2, and Mx and Mt are the axial Mach
number at the fan and the tip rotational Mach number respectively, and z is the
fraction of the total span along the blade at which the particular radial station under
consideration is located. The blades operate at zero incidence to the oncoming flow.
All quantities related to the flow are identical on each blade, except for a constant
phase angle between adjacent blades. All perturbations to the mean flow are taken to
be small, and hence the theory is linear. The fan contains B equally spaced blades of
chord length c, rotating with angular speed Ω. The calculation of the blade response
is performed at a fixed radial station r along the rotating fan, at which the fan is
approximated by an infinite two-dimensional linear cascade of flat plates. As described
in Smith (1972), two different forms of propagating wave are then obtained from the
linearized governing equations. One solution is a vorticity wave which is convected
downstream by the steady mean flow, and the other corresponds to irrotational
pressure perturbations that propagate upstream and downstream of the cascade. The
unsteady blade pressures are then evaluated numerically at a prescribed number of
chordwise stations along each blade.

The dimensional value Lm of the mth azimuthal harmonic of the blade pressure
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jump is defined to be

Lm = ρ0 M
2
r c

2
0ΓW

(
x− x0(r)

cos λ
, r ;

(k1U∞ − mΩ)c

Mrc0

, −2mπ

B

)
, (2.29)

where ΓW (using the notation of Smith 1972) is the non-dimensional pressure jump
across the blade due to an incident harmonic gust. The first and second arguments
correspond to the distance along the chord from the leading edge and the radial
coordinate in our flow geometry, where the leading edge is situated at x = x0(r) and
λ is the blade stagger angle. The third and fourth arguments are the non-dimensional
reduced frequency and the interblade phase angle respectively. The unit normal to
the blade surface is denoted by N , which is given in (x, r, θ) coordinates by

N = (sin λ, 0, cos λ) . (2.30)

To obtain the unsteady pressure jump across the blade due to the incoming distorted
field calculated in § 2.2, we must transform to a coordinate system fixed to the rotating
fan. This is simply done by replacing (x, r, θ) with (x, r, θ′) where θ′ = θ − Ωt, so that
for the nth blade the leading edge is situated at x = x0(r), θ

′ = θ0(r) + 2nπ/B; here
θ0(r) is the azimuthal position of the zeroth leading edge at time t = 0. By taking
spatial Fourier transforms of the upstream unsteady velocity, and then using (2.19)
to give the distorted form of each harmonic component at the fan face, the pressure

jump arising from a free-stream disturbance u∞(x− îU∞t) convected by the mean flow
is then given by

∆p(n)(x, r, t) =

∫
<3

∫
<3

∞∑
m=−∞

1

(2π)3
Lm Np B

m
pk

u∞k (x′)

Mrc0

exp

(
ik1(X −U∞t)

+im

(
θ − tan−1

(
k3

k2

)
+
π

2

))
exp(−ik · x′) d3x′ d3k . (2.31)

Using a similar technique to that described in Appendix C, we can then obtain the
spectrum of the unsteady blade pressures in the form

S∆p∆p (x;ω) =

∞∑
m=−∞

4π2

U∞
sin2 λ

∣∣Lm

∣∣2 Smxx(x;ω) (2.32)

for our axisymmetric geometry. A simple relation has therefore been established
between the spectrum of the blade forces and the xx-component of the turbulence
spectrum at the fan, which was itself derived in (2.25). The axial wavenumber kx is
given by

kx =
ω + mΩ

U∞
, (2.33)

and hence a series of lift pulses at integer multiples of the shaft rotational frequency
Ω is expected. Examples of the spectra for the unsteady blade forces will be presented
in § 4.3.

We now derive an expression for the unsteady force on the fluid due to the presence
of the rotor, which will appear as the source term used in the calculation of the noise
radiated to the far field. The force f(x, t) at any point in space x due to an incident
harmonic gust whose form is given in (2.12) is simply the sum of the unsteady pressure
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jumps given in (2.31) as each blade passes through that point, and it is written as

f(x, t) = N

∞∑
m=−∞

∞∑
n=−∞

Lm δ

(
r

(
θ′ − θ0(r)−

2nπ

B

)
− (x− x0(r)) tan λ

)
Np B

m
pk

ak

Mrc0

× exp

[
i

{
k1X − (k1U∞ − mΩ)t+ m

(
θ0(r) +

2nπ

B
− tan−1

(
k3

k2

)
+
π

2

)}]
,

(2.34)

where the zeros of the argument of the delta function correspond to each occasion a
blade passes through x. Using the identity derived from Poisson’s summation formula
(Jones 1966, p. 137)

∞∑
n=−∞

exp(inθ)δ(ψ + ∆n) =
1

|∆|

∞∑
l=−∞

exp
{

iψ(2lπ − θ)/∆
}
, (2.35)

and re-expressing (2.34) in non-rotating coordinates, we obtain the forcing term in
the form

f(x, t) = N

∞∑
l=−∞

∞∑
m=−∞

B

2πr
Lm

Np B
m
pk ak

Mrc0

exp

[
i(m+ lB)

{
θ − θ0(r)−

x− x0(r)

r
tan λ

}]
× exp i

{
k1X − (k1U∞ + lBΩ)t+ m

(
θ0(r)− tan−1

(k3

k2

)
+
π

2

)}
. (2.36)

The expression for the acoustic forcing is now in a convenient form for the calculation
of the scattered sound, which will be described in § 2.5.

2.5. The radiated sound field

We now evaluate the sound radiated to the far field using the free-space Green’s
function for the convected wave equation, in which the inhomogeneous term is the
force exerted by the rotor on the fluid, as derived in § 2.4. We take coordinates fixed
with the aircraft, and therefore we are required to solve the wave equation in a
medium with uniform axial mean flow U∞ to evaluate the acoustic pressure p(x, t) in
the far field. The wave equation then takes the form

∇2p− 1

c2
0

(
∂

∂t
+U∞

∂

∂x

)2

p = ∇ · f(x, t) , (2.37)

and p(x, t) is assumed to possess harmonic time dependence identical to the forcing
term. The unsteady force f(x, t) at a point x in the fluid was derived in § 2.4, and we
model this term as a dipole source in the far field. The inhomogeneous forcing term
is therefore given by the divergence ∇ · f as shown in (2.37).

In order to predict the sound reaching the far field, we need to work in a frame in
which the effective source defined in (2.36) is moving in a straight line with speed U∞.
These far-field coordinates are written in a plane-polar geometry as (σ0, ϕ), where σ0

is the distance from the source centre (i.e. the centre of the fan) to the stationary
observer at retarded (or emission) time τ, and ϕ is the angle between the axis of the
fan and the line joining the observer to the source centre as displayed in figure 3. The
origin in (x, r) coordinates travels with the source at flight Mach number M∞ relative
to the observer, and our local cylindrical coordinate system is then expressed in terms
of the far-field coordinates (σ0, ϕ) in the form

r = σ0 sinϕ, x = −σ0 cosϕ+M∞σ0. (2.38)
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Observer
at (x,r) Direction
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time ô

ó0

æ

Figure 3. The far-field geometry. Sound is emitted at time τ, and is heard
by the observer at a later time t.

We now consider each azimuthal harmonic in (2.37) separately, and it can be shown
(see Majumdar 1996 for further details) that in the far field (σ0 → ∞), the Green’s
function for the nth azimuthal harmonic in (2.37) is

Gn(x, r; x1, r1) = − i

4
exp

(
− inπ

2
− iπ

2

)
1

2σ0(1−M∞ cosϕ)
Jn(γ0r1)

× exp

(
iωx1 cosϕ

c0(1−M∞ cosϕ)

)
exp

(
−iω

(
t− σ0

c0

)
+ inθ

)
(2.39)

where

γ0 =
ω sinϕ

c0(1−M∞ cosϕ)
. (2.40)

The far-field pressure measured by a stationary observer is then given by applying
(2.39) to (2.37) and summing over all azimuthal modes, in the form

p(x, t) =
1

(2π)3

∞∑
l=−∞

∞∑
m=−∞

∫
<3

∫
<3

u∞i (x′) exp(−ik · x′)
∫ c

0

∫ rA

0

Hi(x1, r1, l, m, k)

× exp

{
−iω

(
t− σ0

c0

)
+ i(m+ lB)θ + im

(
π

2
− tan−1

(
k3

k2

))}
dr1 dx1 d3x′ d3k,

(2.41)

where the integrals over r1 and x1 are over the blade span and chord respectively,

and it follows that for an arbitrary upstream vortical disturbance field u∞(x− îU∞t)
the function Hi takes the form

Hi(x1, r1, l, m, k) =
Jm+lB(γ0r1) B

16 π σ0 Mrc0 (1−M∞ cosϕ)
exp

(
i
(k1U∞ + lBΩ) cosϕ

c0(1−M∞ cosϕ)
x1

)
× exp

[
i

{
k1X − lBθ0(r1)− (m+ lB)

(x1 − x0(r1)

r1
tan λ+

π

2

)}]
× Lm(x1, r1;ω) Np B

m
pi(x1, r1; kr, ω) D ·N

≡ P(x1, r1;ω) Lm(x1, r1;ω) Np B
m
pi(x1, r1; kr, ω) , (2.42)

and where

D ≡
( −iω cosϕ

c0(1−M∞ cosϕ)
, 0,

i(m+ lB)

r1

)
(2.43)

in (x, r, θ) coordinates. Note that p(x, t) possesses the usual σ−1
0 dependence with

distance, together with the Doppler factor (1 −M∞ cosϕ)−1 in the phase due to the
aircraft forward motion.
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The spectrum for the far-field noise is calculated using a similar technique to that
used to determine the post-contraction turbulence spectra (described in Appendix C),
and the relevant expression for an observer at x is given by

Spp(x, ω) =
2π

U∞

∫
<2

∞∑
l=−∞

∞∑
m=−∞

∫ ∞
−∞

∫ ∞
0

H∗
i (x
′
1, r
′
1, l, m, k) dr′1 dx′1

×
∫ ∞
−∞

∫ ∞
0

Hj(x1, r1, l, m, k) dr1 dx1 S
∞
ij (k) dk2 dk3 , (2.44)

where

k1 = kx =
ω − lBΩ
U∞

, (2.45)

and ∗ denotes the complex conjugate. From (2.42) we finally obtain

Spp(x;ω) =

∫ ∞
0

∞∑
l=−∞

∞∑
m=−∞

∫ ∞
−∞

∫ ∞
0

P∗(x′1, r′1;ω)L∗m(x′1, r
′
1;ω)Bmxi(x

′
1, r
′
1; kr, ω)dr′1dx

′
1

× 4π2 sin2 λ

U∞

∫ ∞
−∞

∫ ∞
0

P(x1, r1;ω)Lm(x1, r1;ω)Bmxj(x1, r1; kr, ω) dr1 dx1 S
∞
ij (k) kr dkr .

(2.46)

To obtain the total radiated power, P (ω), in the far field, the expression for Spp(x;ω)
is integrated over a spherical shell of radius σ0 to give

P (ω) = 2 π σ2
0

∫ π

0

Spp(σ0, ϕ ; ω) sinϕ dϕ , (2.47)

and it will prove convenient to consider the power level (PWL) in decibels, as in
Dowling & Ffowcs Williams (1983), in the form

PWL = 10 log10

(
sound power output P (ω)

10−12 W

)
. (2.48)

The spectrum of the far-field radiation is expected to consist of peaks centred
around ω = lBΩ, l = 0,±1,±2, . . ., which corresponds to the frequency with which a
turbulent eddy is chopped by the blades. This follows by first noting that the Bessel
function Jm+lB in (2.42) will make its most significant contribution to the radiation
spectrum when m is close to −lB, so that from (2.45) the axial wavenumber is
then kx ≈ (ω + mΩ)/U∞. Also, since the von Kármán spectrum decays rapidly with
increasing kx (see figure 10b), it follows that the azimuthal mode m will only make a
significant contribution when ω ≈ −mΩ. These are precisely the facts used at the end
of § 2.3 to derive the condition (2.14).

Results will be presented in § 4.4 illustrating the effects of turbulence lengthscale
and inflow conditions. We again emphasize that (2.44) corresponds to radiation from
an open rotor. In the next section we go on to predict the effects of the engine nacelle
by considering a ducted rotor.

3. Formulation for a ducted rotor
The theory for unsteady distortion noise of the unducted fan is now extended to

the case when the fan is surrounded by a nacelle. For the purposes of this analysis, the
nacelle is modelled as a semi-infinite cylindrical duct, and the fan is placed sufficiently
far downstream of the duct inlet that the flow is uniformly parallel at the fan face.
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Figure 4. Geometry of system in which fan is placed inside a semi-infinite cylindrical duct.

3.1. Basic steady flow field

Consider a cylindrical duct with circular cross-section of radius a, which is semi-
infinite in the positive x-direction. There is a uniform axial mean flow U∞ at infinity
outside the cylinder, but we suppose that far downstream inside the cylinder there is
an additional flow Ud, so that the total flow speed downstream is U∞+Ud, see figure
4. This additional component Ud models the effect of the fan in accelerating the flow
through the intake.

We consider inviscid, irrotational steady incompressible flow and use the Wiener–
Hopf technique to solve the Laplace equation for the fluid velocity potential. Again,
we can neglect compressibility in determining the steady flow, since the flight Mach
numbers are low in the conditions of general interest. As is common in Wiener–Hopf
methods applied to incompressible flow problems, we define a small parameter ε for
the purpose of analysis in Fourier-transform space, and look for solutions for the
velocity potential φt(x, r) that satisfy the equation

(∇2 − ε2)φt = 0 ; (3.1)

at the end of the analysis we will send ε→ 0. We write φt(x, r) in the form

φt(x, r) =

{
U∞x+Udx+ φ(x, r) , r < a
U∞x+ φ(x, r) , r > a

(3.2)

and then take the Fourier transform in the streamwise direction x, defined by

Φ(α, r) =

∫ ∞
−∞
φ(x, r) eiαx dx , (3.3)

of (3.1). The solution of this transformed equation which is non-singular on the axis
r = 0 and which decays at infinity is then easily expressed in terms of the modified
Bessel functions as

Φ(α, r) =

{
A(α) I0(κr) , r < a
B(α) K0(κr) , r > a ,

(3.4)

where

κ = (α2 + ε2)1/2 . (3.5)

The complex α-plane contains branch points at ±iε, with the branch cuts taken to
infinity in the upper and lower half-planes respectively. The quantity κ takes positive
real values as α→∞ along the positive real axis.

We prescribe the following boundary conditions on the flow:
(i) The radial velocity is continuous across r = a for all x, i.e.

∂φt

∂r
is continuous across r = a . (3.6)
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(ii) The radial velocity is identically zero on the surface of the cylinder, giving

∂φt

∂r
= 0 on r = a, x > 0 . (3.7)

(iii) The axial velocity must be continuous across r = a for x < 0, so

∂φt

∂x
is continuous across r = a, x < 0 . (3.8)

In order to apply boundary condition (iii) we must first introduce an artificial damping
factor into (3.2) by replacing Ud by Ude

εx, in order to allow the transforms to be
completed. We now multiply (3.2) by eiαx and integrate over x < 0 to yield

[φ(−0, a)]− iα
[
Φ(α, a)

]−
− Ud

iα+ ε
= 0 , (3.9)

where
[
Φ(α, a)

]−
is simply the transform of the jump in φ(x, r) across r = a over the

negative half-range x < 0, and [φ(−0, a)] is the jump in the potential across r = a at
z = 0. We now take the r-derivative of (3.4) to yield a relationship between A(α) and
B(α) from (i), while from boundary condition (ii) we see that

∂Φ

∂r
(α, a) =

∂Φ

∂r

−
(α, a) , (3.10)

where (∂Φ/∂r)−(α, a) is the transform of ∂φ/∂r over the negative half-range x < 0,
which is then used to give an expression for A(α) in terms of (∂Φ/∂r)−(α, a). By
combining this result with (3.9), it is then a straightforward matter to obtain the
equation

[φ(−0, a)] = −iα
[
Φ(α, a)

]+

+
∂Φ

∂r

−
(α, a)

iα

κ2aI0
′(κa)K0

′(κa)
− iUd

α− iε
, (3.11)

where
[
Φ(α, a)

]+

is the transform of the jump in φ(x, r) across r = a over the positive

half-range x > 0. We write the Wiener–Hopf kernel as

K(α) = −2I0
′(κa)K0

′(κa) = 2I1(κa)K1(κa) = K+(α)K−(α) , (3.12)

where K+(α) and K−(α) are analytic, free of zeros and possess algebraic behaviour
at infinity in the upper and lower half-planes R±, defined by

R+ ≡
{
α : Im(α) > −ε

}
and R− ≡

{
α : Im(α) < ε

}
(3.13)

respectively. The kernelK(α) is regular in the strip |Im(α)| < ε, and has the value unity
at the branch points α = ±iε. Equation (3.11) is then rewritten in the Wiener–Hopf
form

α[φ(−0, a)]K+(α) + iα2
[
Φ(α, a)

]+

K+(α) + iUdα

{
K+(α)−K+(iε)

α− iε

}
= −2i

∂Φ

∂r

− 1

aK−(α)
− iUdα

K+(iε)

α− iε
, (3.14)

and since the left-hand and right-hand sides of (3.14) are analytic in R+ and R− re-
spectively, by analytic continuation they define a function which is analytic throughout
the α-plane. Moreover, in order to ensure that we obtain the least-singular solution,
we insist that both sides of (3.14) approach zero as α→∞ in the respective half-plane.
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By Liouville’s theorem, it therefore follows that both sides of (3.14) are identically
zero, from which we can determine an expression for the unknown (∂Φ/∂r)−(α, a).
After some manipulation we find that

Φ(α, r) = −aUdαK−(α)K+(iε)

2(α− iε)

I0(κr)

κI0
′(κa)

, r < a (3.15)

Φ(α, r) = −aUdαK−(α)K+(iε)

2(α− iε)

K0(κr)

κK0
′(κa)

, r > a , (3.16)

and using the factorization technique described in Levine & Schwinger (1948), and
Peake (1995), the expressions for the Wiener–Hopf factors K±(α) are given by

K±(α) =
[
2I1(κa)K1(κa)

]1/2
exp

{
± α
πi

∫ ∞
0

ln[2I1(ax)K1(ax)]

x2 − α2
dx

}
. (3.17)

We can now set ε = 0 since the Wiener–Hopf factorization is complete, so that the
term κ of (3.5) is simply equal to |α|. We are now required to retrieve the velocity
potential φ(x, r) by inverting the Fourier transform (3.15), (3.16), and the solution
takes different forms depending on the position relative to the duct.

(a) r < a, within the duct radius
The x and r derivatives of φ(x, r) are taken to obtain the required velocity field

components u(x, r) and v(x, r). The integral expression for the axial speed u(x, r)
possesses a simple pole at α = iε, and we therefore obtain u(x, r) as a sum of the
contribution from the pole and the Cauchy principal value in the form

u(x, r) =
Ud

2
+

iaUd

2π
P

∫ ∞
−∞

αK1(|α|a)I0(|α|r)
|α|R(α)

exp(−iαx+ iθ(α)) dα , (3.18)

where from (3.17) we have written

K+(α) =K−(−α) = R(α)e−iθ(α) , (3.19)

P indicates the Cauchy principal value and where we have now taken the limit ε→ 0
in the integral. Note that R(α) = R(−α), θ(α) = −θ(−α) and K±(0) = 1. Equation
(3.18) exhibits the correct behaviour as |x| → ∞, namely u(x, r)→ 0 as x→ −∞ and
u(x, r)→ Ud as x→ +∞. The radial velocity v(x, r) is given by

v(x, r) =
∂φ

∂r
= −aUd

π

∫ ∞
0

K1(αa)I1(αr)

R(α)
cos(αx− θ(α)) dα (3.20)

and we note that no singularity exists in the integrand since K1(αa)I1(αr) → r/2a as
α→ 0. The corresponding streamfunction Ψ (x, r) for r < a is expressed as

Ψ (x, r) = 1
2
U∞r

2 + 1
4
Udr

2 +
iaUdr

2π
P

∫ ∞
−∞

αK1(|α|a)I1(|α|r)
|α|2R(α)

exp(−iαx+ iθ(α)) dα . (3.21)

(b) r > a, outside the duct radius
In exactly the same way, the axial and radial velocity components are now given

by

u(x, r) = −aUd

π

∫ ∞
0

I1(αa)K0(αr)

R(α)
sin(αx− θ(α)) dα , (3.22)
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Figure 5. Streamlines of the flow induced by a sink downstream inside an infinite cylindrical duct
in typical flight conditions, in which the ratio Ud/U∞ = 0.412. The streamtube radius is roughly 1.2
times the duct radius. Flow is from left to right.

v(x, r) = −aUd

π

∫ ∞
0

I1(αa)K1(αr)

R(α)
cos(αx− θ(α)) dα , (3.23)

and the streamfunction Ψ (x, r) is written in the form

Ψ (x, r) = 1
2
U∞r

2 + 1
4
Uda

2 +
iaUdr

2π
P

∫ ∞
−∞

αI1(|α|a)K1(|α|r)
|α|2R(α)

exp(−iαx+ iθ(α)) dα , (3.24)

where the constant Uda
2/4 has been introduced to ensure continuity of Ψ across

r = a. A plot of the basic-flow streamlines in typical aircraft approach conditions
is displayed in figure 5. The flow is uniform and parallel at the fan face with speed
Uf = U∞ + Ud, and outside the duct a small streamtube contraction is observed,
although only in the close vicinity of the duct. Away from the duct, the flow is
parallel both upstream and downstream.

3.2. Rapid distortion theory

We use a similar formulation of rapid distortion theory to that described in § 2.3, but
this time using the basic steady flow U (x) as calculated in § 3.1. Again, we consider
only azimuthal harmonics with |m| large, so that the closed-form expressions for
the irrotational part of the distorted velocity field can still be used. However, the
distorted velocity field as expressed in (2.19) does not satisfy the boundary condition
of zero normal velocity on the wall of the cylinder, since the calculations in § 2.3 are
performed for an unducted rotor, and we must therefore include an additional term
in the distorted field to render the radial flow to be zero on r = a. Firstly, we express
the radial velocity component of the incident turbulent field from (2.19) in the form
of a summation over the circumferential harmonics

ur(x, t) =

∞∑
m=−∞

r̂i B
m
ij (x; k) aj exp

(
ik1(X−U∞t) + im

(
θ− tan−1

(
k3

k2

)
+
π

2

))
. (3.25)

We now introduce an additional irrotational velocity to exactly cancel this radial
component on r = a; we look for φ(x, r, t) as a solution of Laplace’s equation in the
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form

φ(x, r, t) = f(r) exp

{
ik1(X −U∞t) + im

(
θ − tan−1

(
k3

k2

)
+
π

2

)}
(3.26)

for the mth circumferential harmonic. Since we suppose that the fan is placed suffi-
ciently far downstream of the inlet for the mean flow at the fan to be parallel, the
distorted axial wavenumber l1 is given by (using 2.21)

l1 =
∂X

∂x
k1 , (3.27)

where ∂X/∂x is constant. Laplace’s equation therefore reduces to the modified Bessel
equation in r, which yields a solution that is non-singular on the axis. Setting the
total normal velocity on the duct wall r = a to zero yields the solution for f(r) in the
form

f(r) = −
r̂i B̄

m
ij aj Im(l1r)

l1 I′m(l1a)
, (3.28)

where the overbar denotes that Bmij is evaluated at r = a. The field induced by the
inflow distortion can then be written as

ui =

∞∑
m=−∞

Cm
ij (r; k) aj exp

{
ik1(X −U∞t) + im

(
θ − tan−1

(
k3

k2

)
+
π

2

)}
, (3.29)

where Cm
ij can be calculated in full from (3.25) to (3.28). When the flow is axisymmetric,

the θ-components of Cm
ij are unnecessary, and the expressions for Cm

ij can be simplified
by noting that

x̂i B
m
ij = Bmxj and r̂i B

m
ij = Bmrj , (3.30)

and so we obtain

Cm
rj(r; k) = Bmrj − B̄mrj

I′m(l1r)

I′m(l1a)
, (3.31)

Cm
xj(r; k) = Bmxj − iB̄mrj

Im(l1r)

I′m(l1a)
. (3.32)

We are now in a position to calculate the distorted turbulence spectra, and we can
simply perform the same analysis as in § 2, since the velocity field (3.29) is of an
equivalent form to that in (2.19) with Cm

ij (r; k) replacing Bmij (x; k). The expression for
the post-contraction turbulence spectrum then takes the form

Smij (x;ω) =
4π2

U∞

∫ ∞
0

Cm∗
ik (r; k) Cm

jl (r; k) S∞kl (k) kr dkr (3.33)

for the mth circumferential harmonic in our axisymmetric geometry, and in (3.33)
kx = ω/U∞.

The calculation of the unsteady blade forces is unchanged from § 2.4, with only the
terms arising from the inflow distortion changing form due to the presence of the
duct, so that the spectrum of the blade pressures is therefore given by (2.32) with Smxx
taken from (3.33). The frequency in this case is given by ω = kxU∞ − mΩ.

3.3. The radiated sound field

For a ducted rotor, the radiated directivity is different to that calculated in § 2.5 for
the unducted rotor. However, the total sound power emitted by the ducted rotor will
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be in close agreement with that emitted by the same rotor without the duct, essentially
because for the many-bladed fans of practical interest most of the radiation is emitted
at relatively high frequency, for which the reflection coefficients at either end of the
cylindrical duct are very small. The ducted rotor will of course emit radiation both
upstream and downstream, but clearly it is only the upstream radiation that escapes to
the far field and needs to be included in a noise prediction scheme – the downstream
component is for the most part attenuated within the engine. In order to estimate the
sound power level for a ducted rotor, it therefore follows that we can simply calculate
the emitted power as if the rotor were unducted, as in § 2, and multiply this result
by the fraction of the total power from a ducted rotor which propagates upstream.
In this subsection we aim to estimate this fraction, and to do this we first consider
a single point source located in an infinite duct at a radius r1 and axial coordinate
x1. The sound field in the duct is then given by the ducted Green’s function, the nth
azimuthal harmonic of which is denoted Gn(x, r; x1, r1). By taking Fourier transforms
in x, applying the zero-normal-velocity boundary condition on r = a and the usual
continuity and derivative-jump conditions across the source, it can be shown that

Gn =


1
4

exp
(
iψ
) ∫ ∞

−∞

{
Yn(γr)−

Y′n(γa)

J′n(γa)
Jn(γr)

}
Jn(γr1) exp(ik(x− x1)) dk

1
4

exp
(
iψ
) ∫ ∞

−∞

{
Yn(γr1)−

Y′n(γa)

J′n(γa)
Jn(γr1)

}
Jn(γr) exp(ik(x− x1)) dk

(3.34)

for r1 < r and r1 > r respectively, with

γ2 =
(ω −U∞k)2

c2
0

− k2 , (3.35)

and

ψ = −ωt+ nθ . (3.36)

We proceed to examine the far-field acoustic intensity directly upstream and down-
stream of the point source at r = r1. The integrands in (3.34) possess an infinite
number of simple poles at the zeros of J′n(γa), which we denote by

j ′ns = γnsa , s = 0, 1, 2, . . . , (3.37)

and using the relation (3.35) between γ and k the corresponding poles in the complex
k-plane are given by

k±ns = −ωM∞
c0β2

± 1

β

(
ω2

β2c2
0

− j ′ns
2

a2

)1/2

, 0 6 s 6 p (3.38)

and

k±ns = −ωM∞
c0β2

± i
1

β

(
− ω2

β2c2
0

+
j ′ns

2

a2

)1/2

, s > p , (3.39)

where p is the largest value of s such that the square root in (3.38) is real; the first
p+ 1 poles are situated along the real axis. The residue corresponding to the sth zero
of J′n(γa) is then given by the expression

Res (γa = j ′ns) = − 1
4

exp
(
iψ
) Y′n(γnsa)

a(dγ/dk) J′′n(γnsa)
Jn(γnsr1) Jn(γnsr) exp

(
ik±ns(x− x1)

)
,

(3.40)
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Figure 6. Predicted acoustic intensities upstream and downstream of the rotor for varying
free-stream axial Mach number M∞. A cut-off condition exists at M∞ = 0.197, and the inten-
sity is predicted to be infinite there.

where
dγ

dk
= −1

γ

{
(1−M2

∞) k±ns +M∞
ω

c0

}
. (3.41)

It then follows that the acoustic pressure within the duct due to the point source
can be written as

p′(x, r; x1, r1) =
∑
n,s

Ans Jn(γnsr) exp

(
−iωt+ inθ

)
exp

(
ik±ns(x− x1)

)
(3.42)

where

Ans = − 1

4a

Y′n(γnsa)

(dγ/dk) J′′n(γnsa)
Jn(γnsr1) , (3.43)

and dγ/dk is given by (3.41). The axial component of the total acoustic intensity I is
given by (Morfey 1971; Goldstein 1976, p. 41)

I · x =

(
p′

ρ0

+U∞u
′
)(

ρ0u
′ +

p′

c2
0

U∞

)
, (3.44)

where u′ is here the unsteady axial velocity, and using (3.42) we deduce the mean
acoustic intensity integrated across the cylinder cross-section, I, in the form

I =
2π

ρ0

∑
n,s

{
1+

k±nsU∞

ω −U∞k±ns

}{
k±ns

ω −U∞k±ns
+
U∞

c2
0

}
|Ans|2

1

2j ′2ns

[
j ′ns

2−n2

]
J2
n(jns) , (3.45)

where we have used an orthogonality relation between the Bessel functions as given
on p. 291 of Luke (1962). Depending on the ± signs in the expression, the acoustic
field can be predicted upstream (−) or downstream (+) of the fan.

The predicted noise levels in (3.45) are plotted in figure 6 for the first harmonic of
BPF, in which the contributions from n = {−1, 0, 1} in (3.45) have been included.
Since n = m + lB, it can be seen from (2.42) that the dominant contribution to the
radiated power arises from the lowest orders (essentially because the Bessel function
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decays exponentially as n increases). The free-stream axial Mach number M∞ is varied
between 0 and 0.4, which is a realistic range for aircraft operating conditions. For
M∞ = 0, there is no free-stream uniform flow and therefore the acoustic intensity
is the same both upstream and downstream of the source. As M∞ is increased,
the mean intensity upstream (which we denote by IU) decreases steadily, whereas
that downstream (denoted by ID) increases. The downstream-travelling sound waves
propagate in the same direction as the mean flow and hence they are also convected
with the flow, thereby leading to a greater intensity than that experienced upstream.
For stronger mean flows, the acoustic intensity ID is accordingly higher, and it is
clear that the ratio IU/ID generally decreases steadily as M∞ is raised. The predicted
power radiated upstream from a fan can therefore be obtained as a fraction of the
total power calculated using the free-space Green’s function.

However, an obvious non-uniformity exists in figure 6 when the Mach number
M∞ = 0.197. This corresponds to the acoustic cut-off condition, in which the term
dγ/dk (given in (3.41)) in the denominator of (3.45) becomes zero. This occurs when

k = −ωM∞
β2c0

, γ = γns =
j ′ns
a

=
ω

βc0

, (3.46)

and at this resonant condition the acoustic intensities both upstream and downstream
are predicted to be infinite, although the ratio IU/ID remains finite and is equal
to 1. It is straightforward to deduce from (3.46) that 6 modes in (3.45) are cut-on
for M∞ < 0.197 for the n = 1 term in the sum, and that a seventh mode becomes
cut-on at M∞ = 0.197. As M∞ is increased beyond 0.4, additional modes are cut-on
for each harmonic index n. Acoustic cut-off (or resonance) only appears at a discrete
number of parametric conditions, and while the problem of exactly how the flow
should be modelled at these conditions (particularly in the light of the conclusion in
Majumdar & Peake 1996 that two-dimensional strip theory is inapplicable at such
resonances) requires further investigation, the theory derived in this paper holds for
the vast majority of low-speed conditions, in which the duct modes are not close to
cut-off.

4. Results
The theory presented in §§ 2 and 3 has been developed to provide analytical

expressions for the important quantities at each stage of the unsteady distortion
interaction process and the subsequent noise scattered to the far field. A parametric
study is conducted in this section, and the results presented here display the spectra
of the free-stream turbulence, the unsteady blade forces and the power and directivity
of the radiated noise. It is also possible to investigate the behaviour of quantities
such as the distorted wavenumber components at the fan or the unsteady pressure
distribution along the rotating fan blades.

4.1. Intake geometry in static tests

In static tests a bellmouth (or flared) inlet is often attached to the front of the engine,
and we can extend our theory to cover this case by representing this device by an
actuator disk to model the inflow in a realistic manner. An actuator disk of radius rB
is placed at the cross-section of the bellmouth rim and the flow at the fan, downstream
of the flared intake, is then taken to be uniform and parallel. The constant axial speed
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UB at the actuator disk is calculated using the simple conservation-of-mass relation

UB =
r2
f Uf

r2
B

, (4.1)

where Uf and rf are the axial flow speed and duct radius at the fan (with rB > rf). The
strength of the actuator disk can be determined from UB , and by using a standard
result (Glauert 1959, p. 202) for the axial flow at the actuator disk we find that

UB = U∞ + 1
2
Ud . (4.2)

We compute the drift function and its radial derivative at the actuator disk (i.e. the
bellmouth inlet), which is reasonable since the variation of the drift between the inlet
and the fan is negligible. A justification of this simplification is presented in § 5.2 of
Majumdar (1996). We do not use the actuator disk model for any blade loading or
sound radiation calculations; the sole use of the actuator disk is to provide a realistic
description of the inflow which captures the essential features of the streamtube
contraction. In static tests, it is ensured that the airflow conditions through the fan
best represent those that occur in flight, and we accordingly take the same value of
Uf in both static and flight conditions throughout our computations.

In flight, no such flared intakes are used and we use either an open rotor for our
calculations, which is represented by an actuator disk of the same radius as the rotor,
or the ducted rotor as described in § 3.

4.2. Turbulence spectra at the fan face

The results presented here are based on the theory described in § 2.3 for an open rotor,
although similar results exist for a ducted rotor. As is evident from the expression
of the von Kármán spectra in (2.4), the key variables are the integral lengthscale

L and the mean kinetic energy u2
∞,1 of the turbulence. The latter quantity is simply

a constant multiplicative factor which comes out of the integral expression for the
spectra of the distorted turbulence, so we concentrate on the dependence on integral
lengthscale.

The turbulence spectra effectively represent the turbulent kinetic energy for a range
of frequencies ω, where ω = kxU∞. Figure 7 displays the spectrum S−26

xx (ω) at a fixed
point on the fan under typical static conditions, for varying integral lengthscales. The
number of blades on typical fans varies between 22 and 30, and so for definiteness
we choose an average value of B = 26, so that the value m = −26 will be important
in the contribution to tonal noise, as will be shown in § 4.4. It is evident from figure 7
that for low wavenumbers (i.e. low frequencies) the turbulent energy increases as the
integral lengthscale is raised, until we reach lengthscales greater than the order of the
streamtube radius, beyond which the energy decreases as L is increased. It has been
suggested by Ganz (1980) that eddies of integral scale larger than the streamtube
radius are only slightly affected by the flow contraction, and as shown in figure 2 the
streamtube radius is roughly 10 times the blade radius in indoor static conditions.
In static tests, it is therefore not necessary to investigate the effects of free-stream
turbulent fields with integral lengthscales of the same order as the streamtube radius.
At higher axial wavenumbers (i.e. higher frequencies), we can see from figure 7 that
the energy decays exponentially.

The difference in the form of turbulence spectra in static and flight conditions is
also evident from figure 7. In flight, the energy level is observed to be higher and it also
remains constant for a greater frequency range than under static conditions, before
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Figure 7. Turbulence spectra S−26
xx (ω) at the fan face, under typical static and flight conditions.

Under static conditions we have Ud/U∞ = 72.6, whereas in flight Ud/U∞ = 0.82. The integral
lengthscale L of the free-stream turbulence is varied.

decaying exponentially for higher wavenumbers. It is worth noting that the spectrum
in flight is similar in shape to that obtained for the lowest value of L (L = 0.01)
in figure 7 under static conditions, i.e. the frequency at which the turbulent energy

level starts to decay exponentially is roughly the same. With a suitable scaling of u2
∞,1,

the spectra can be made to look identical. One of the key questions in static noise
tests is how flight conditions can be reasonably simulated via the implementation
of turbulence control mechanisms, and it is evident from figure 7 that the reduction
of integral lengthscales and the mean energy of the free-stream turbulence in static
conditions may lead to similar forms of distorted turbulence at the fan face to those
expected in flight.

4.3. Unsteady blade forces

In this subsection we present results for the unsteady blade forces arising from the
interaction of the rotating fan and the distorted turbulent field at the fan face. In
figure 8 the spectra for the unsteady blade forces S∆p∆p (x;ω), as expressed in (2.32),
are displayed for varying integral lengthscales of the free-stream turbulence and
under static and flight conditions. The circumferential harmonics of the turbulent
field m = −27,−26,−25 are considered here, since these values will be important in
the prediction of tonal noise at blade passing frequency (see the next subsection). It
is clear that peaks exist at ω = −mΩ for the values of m considered here, where Ω is
the shaft rotational frequency. The peaks are of higher magnitude for larger integral
lengthscales L, and also of narrower width. The physical explanation is that each
elongated eddy is chopped as each fan blade passes through it, providing a coherent
unsteady forcing on the blade. Eddies of larger integral lengthscale are longer after
distortion than those of smaller integral scale, and hence are chopped a greater
number of times, thereby producing higher blade pressure levels at the harmonics of
the shaft frequency. The spectra of the very small-scale eddies possess relatively low
peak levels at harmonics of the shaft rotational frequency due to the limited chopping
of distorted eddies of short axial extent, but the broadband part of the spectrum is
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Figure 8. Spectra of blade forces S∆p∆p (x;ω) at a fixed point on the blade, for different values of L.
Harmonics at −mΩ for m = −27,−26,−25 are evident for static conditions, but are absent in flight.

The spectrum corresponding to flight conditions is multiplied by a suitable value of u2
∞,1 in order to

demonstrate that the effects of flight conditions may be mimicked by the ingestion of small-scale
eddies in static tests. The values of U∞ and Ud are as given in figure 7.

more significant than for higher lengthscales. The latter phenomenon is due to the
presence of the three-dimensional von Kármán spectra S∞xx(k) in the expression for
S∆p∆p (x;ω) (given in (2.32)), and if we examine the behaviour of S∞xx(k) in figure 7 for
large axial wavenumber kx (corresponding to the broadband component), we observe
that the value of S∞xx(k) decreases slightly as L is raised. Conversely, the turbulent
energy increases with L in cases when the axial wavenumber kx is small.

A comparison between blade pressure spectra in typical static and flight conditions

is also presented in figure 8, with the value of u2
∞,1 accordingly scaled to emphasize

the similarity of flight effects and the interaction of small-scale eddies with the fan
in static conditions. No peaks are observed to occur in flight, which highlights the
lack of strong unsteady distortion, due to the forward motion of the aircraft. The
consequence is that turbulent eddies are not significantly elongated as they are drawn
towards the fan, and the turbulence that interacts with the fan is more or less isotropic.
The eddies at the fan are therefore of relatively short axial extent, and due to the
higher mean flow speed they are convected through the fan sufficiently quickly to
avoid any repeated chopping. Only a weak, broadband unsteady loading therefore
occurs on the blades.

4.4. Open rotor radiation

Predictions of the radiated noise at a point x ≡ (σ0, ϕ) (displayed in figure 3) in
the far field are presented in this subsection for the open rotor geometry, using the
expression for the spectrum of the radiated power given in (2.46). The quantities
within the integrand of (2.46) are evaluated at discrete values of r1, x1, r

′
1 and x′1, and

the unsteady blade pressure distributionLm along nx chordwise points is calculated at
a finite number nr of radial stations r1, r

′
1. Values of nx = 6 and nr = 5 were found to

give satisfactory results. Each integral over the spatial coordinates is performed using a
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third-order finite-difference method, whereas the integral over the radial wavenumber
is calculated numerically using a standard integration subroutine. The quantities Bmxi
which are dependent on the distorted field terms can be assumed to be independent
of axial stations x1, x

′
1, since the drift function and basic flow streamfunction do not

vary significantly over the blade chord, and therefore their values can be taken at
the leading edge of the fan. Results are obtained for the radiated power in the far
field for the whole range of observer angles ϕ. In our study, we concentrate on the
frequency range containing the first two harmonics of blade passing frequency (BPF).

In figure 9(a) the power level (PWL), defined in (2.48), is plotted against the
frequency ω for typical indoor static testing conditions. The PWL is presented for
different integral lengthscales L of the free-stream turbulence, and in each case there
is a significant peak at the first two harmonics of BPF. The peak level is seen to
increase, and the bandwidth of the peaks decrease, with increasing L, and the reason
for this is precisely the same as given in § 4.3, i.e. that the elongated eddies with larger
values of L are chopped more often in their passage through the fan. In fact, an
infinitely long eddy would be chopped an infinite number of times, leading to a peak
of δ-function form with infinite amplitude and infinitesimal width. The peak width is
observed to decrease as L is increased, and using dimensional arguments the width
of each peak is expected to vary approximately in the manner

∆ω ∼ U∞

L
(4.3)

in cases where all other quantities remain fixed (some further investigation is required
theoretically and experimentally to obtain a more detailed estimate for the peak width
than is given in equation (4.3)).

The power level at the first two harmonics of BPF is displayed in figure 9(b) for
varying integral lengthscale L (plotted on a log scale), under identical static testing
conditions to those applied in figure 9(a). The radiated power at each harmonic of
BPF increases as L is increased from zero, and it attains a peak when L is of order
0.1 m, and as L is increased further the PWL decreases slowly. In addition, we note
that the magnitude of the tone at the first and second harmonic of BPF is similar for
smaller L, whereas the first harmonic of BPF is approximately 11.5 dB higher than
the second harmonic when L is approximately 1 m. In static tests, the first harmonic
of BPF is known to represent the dominant source of fan noise, and this is consistent
with our prediction shown in figure 9(b).

The significant difference in sound radiation between typical static and flight
conditions is observed in figure 10(a), for the same integral lengthscale L in both
cases. It is noticeable that in flight no peaks are apparent at either harmonic of BPF,
and this is of course because no peaks in the blade pressure spectrum were observed
in flight (see figure 8).

In figure 10(a) we see that the shape of the broadband component of the spectrum
in flight is similar to that evaluated for static conditions. However, the power level
is far greater in flight, as also found by Amiet, Simonich & Schlinker (1990). The
reason behind this is not entirely obvious, so we will now discuss the phenomenon
in some detail. We first note that the axial flow speed at the fan is the same under
both static and flight conditions, so there is no difference in the energy input from the
steady mean flow between the two conditions. The difference in the magnitude of the
broadband noise must therefore be attributed to the form of the turbulence at the fan
face. From (2.45), we notice that kx is inversely proportional to the free-stream flow
speed U∞, which we take to be 85 times larger in flight than in static conditions, and
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Figure 9. (a) Sound spectra under typical indoor static conditions (with Ud/U∞ = 72.6) for various
values of turbulence integral lengthscale L. (b) Variation of tonal magnitude at the first and second
harmonics of BPF with the integral lengthscale L, for indoor static conditions.

we therefore have a ratio of 85 between the axial wavenumber for each case. From
(2.46), the quantity which changes most significantly with the axial wavenumber is
the three-dimensional spectrum of the isotropic free-stream turbulence S∞ij (k), defined
in (2.4). Since we are looking at the broadband spectrum, the value of kx is quite
large, especially under static conditions, and therefore the k2

x term becomes dominant

in the denominator of (2.4). In static conditions we therefore obtain a k
−17/3
x decay in

the S∞xx term, and similarly strong decay rates in S∞xr and S∞rr respectively (the decay
in S∞xx is shown in figure 10b), and there is therefore a ratio of roughly 8511/3 ≈ 107
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Figure 10. (a) Comparison between sound spectra in typical static conditions and flight, for L = 1
m. (b) Behaviour of the S∞xx component of the three-dimensional von Kármán spectra for ω = 8000
rad s−1 in (a). The transverse wavenumber component kr = 10 m−1 here.

in the integrand of (2.46) between static and flight conditions. From figure 10(b), the
incident turbulent energy in static conditions is observed to be much less than that in
flight, and hence the broadband power level in the sound spectra is generally much
lower than in flight. The difference is of order 70 dB, which is in agreement with the
factor of 8511/3.

The directivity for an open rotor is predicted by (2.46), and a plot of the angular
distribution of the sound power level for the first two harmonics of BPF is displayed
in figure 11. The maximum sound occurs directly ahead of and behind the fan (i.e.
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Figure 11. Directivity pattern for the first two harmonics of BPF and a broadband
frequency 1

2
× BPF under indoor static testing conditions (as in figure 9a).

along the engine axis), at angles ϕ = 0 and ϕ = π respectively. A minimum occurs
at right angles to the engine axis, at ϕ = π/2 in each case. For most angles the
scattered sound is greater at BPF than for its second harmonic. For comparison, the
directivity of a broadband noise component at 1

2
× BPF is shown and the noise level

is accordingly lower at all angles, although a similar directivity pattern to those for
the harmonics of BPF exists.

4.5. Ducted rotor radiation

In figure 12, the power spectra for an aircraft in flight are presented for an unducted
rotor and a ducted rotor. The methods to calculate the far-field radiated power using
a Green’s function approach are identical in both cases, and it is simply the inflow
velocity fields that are of different form. The same parameters have been used for
both cases. The two forms of the power spectra are shown to be very similar, with the
radiated power from the unducted rotor being marginally greater overall. A possible
explanation for the slightly higher noise level is that the distortion is greater for an
open rotor, due to a larger streamtube radius. Some fluid particles which normally
pass through an open rotor near the tip may be obstructed if a duct is inserted, and
therefore the upstream catchment area (i.e. the streamtube radius) of fluid particles
is smaller for the ducted rotor. From the total power calculated for a ducted rotor as
displayed in figure 12, we would be able to predict the power radiated upstream of
the ducted rotor using the results obtained in § 3.3.

5. Concluding remarks
In this paper we have investigated the interaction between ingested atmospheric

turbulence (known as ‘unsteady distortion’) and a rotating fan, in order to predict
the resulting tonal and broadband noise in the far field. The key physical phenomena
that occur in the distortion process can be briefly summarized. Owing to the high
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Figure 12. Spectra of the radiated power, calculated using the theories for an open rotor and a
ducted rotor in flight (Ud/U∞ = 0.82).

angular speed of the fan, a streamtube contraction exists upstream which accelerates
fluid elements towards the fan. In static conditions, the inflow contraction is very
strong indeed whereas it is relatively weak in typical flight conditions of interest.
Turbulent eddies in the atmosphere are drawn into the engine and elongated as they
travel towards the fan. Although the free-stream turbulence is taken to be isotropic,
the eddies that arrive at the fan in static conditions are of highly anisotropic form,
with great elongation in the axial direction and a proportional contraction in the
transverse direction. As each long, narrow filament is convected through the fan, it is
repeatedly sliced by the rotating blades leading to a distribution of unsteady forces
on the blades, thereby radiating sound to the far field.

The effects of typical static and flight (aircraft approach) conditions were analysed,
as were the key parameters such as the integral lengthscale L of the free-stream
turbulence. It was deduced that for integral lengthscales less than the streamtube
radius, the unsteady distortion produced sharp tonal noise at harmonics of blade
passing frequency under static conditions, with the magnitude of the tones increasing
with L whereas the tonal width decreased as L was raised. In flight, the turbulent
eddies underwent a very weak distortion, thereby leaving the turbulence almost
isotropic, and the relatively short streamwise lengthscale therefore led to an absence
of pressure pulses on the blades and hence no tones at harmonics of BPF were
apparent in the spectra of the radiated sound.

There is great scope for further work on the theory of unsteady distortion noise.
Our theory has been developed for an arbitrary form of free-stream atmospheric
turbulence, although we have only used the most straightforward available model
in the first instance. Firstly, the development of realistic turbulence models in static
and flight conditions is required in order to quantify the precise effects of flight on
the distortion, which will in turn enable the implementation of better inflow control
devices in engine tests. The inclusion of more realistic steady flow fields upstream
of the fan will also be necessary in due course, for both static conditions (in which
the flared intake is added) and in flight. Furthermore, a significant improvement
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to the theory for ducted-rotor radiation would be possible using the application of
Chapman’s (1996) theory to predict the directivity of sound. It will be a natural
addition to our analysis, since it is able to predict noise levels from a ducted rotor
directly from those obtained for an open rotor, via calculations of ‘nil-shielding’
directions and a subsequent open-to-ducted transfer function. The theory may also
be coupled with a theoretical prediction scheme for ‘steady distortion noise’, which
incorporates effects such as that of the non-uniform cross-section of the intake (known
as ‘droop’). Additionally, our theory can be extended to include effects such as swirl
in the mean flow.

A significant part of the theory for unsteady distortion noise is based on ideas
(Cargill 1993) originally outlined by the late A. M. Cargill of Rolls-Royce plc. The
authors are grateful to Dr A. B. Parry for helpful discussions. S. J. Majumdar
acknowledges financial support provided by EPSRC and Rolls-Royce plc under the
CASE award scheme.

Appendix A. Basic steady flow field for the generalized actuator disk
The induced axial speed u(x, r) can be expressed in two forms which give identical

results, and both are convenient for use in our analysis. The first expression is the
more straightforward for calculation of u itself, but we also need certain derivatives
of u to calculate the drift function of the basic flow, in which case it is simpler to
use the second expression. The two forms for u(x, r) induced by an actuator disk of
radius rA are given by (Hough and Ordway 1965)

u(x, r) =


Ud

4

[
x

π(rAr)1/2
Q−1/2(ω) + Λ0(β, κ) + 2

]
if [r 6 rA]

Ud

4

[
x

π(rAr)1/2
Q−1/2(ω)− Λ0(β, κ)

]
if [r > rA],

(A 1)

or alternatively

u(x, r) =


Udx

2πU∞r3/2

∫ rA

0

1

r
1/2
v

Q
′

−1/2(ω1) drv if [r > rA] or [r 6 rA and x < 0]

Ud +
Udx

2πU∞r3/2

∫ rA

0

1

r
1/2
v

Q
′

−1/2(ω1) drv if [r 6 rA and x > 0],

(A 2)
where

ω1 = 1 +
x2 + (r − rv)2

2rrv
, (A 3)

Qν(ω) is the Legendre function and ω is obtained by replacing rv with rA in (A3). The
quantity Ud is the limit of u(x, r) at downstream infinity (i.e. x→∞), where the flow is
uniform and purely in the axial (streamwise) direction. The ratio Ud/U∞ determines
the strength of the inflow contraction, and as this quantity is increased the turbulent
eddies experience a greater distortion. At the actuator disk itself, i.e. x = 0, r < rA, the
induced axial flow speed is u(0, r) = Ud/2 and a non-zero radial component exists, so
the flow is non-parallel as it approaches the disk.

The radial component of the induced flow takes the more straightforward form

v(x, r) = −Ud

2π

(rA
r

)1/2

Q1/2(ω) . (A 4)
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The corresponding streamfunction of the induced flow Ψ ′(x, r) can be expressed as

Ψ ′ =


Udxr

2π

{
−E(κ)

κ

(rA
r

)1/2

+
κ(x2 + 2r2

A + 2r2)K (κ)

4(rAr3)1/2

}
+
Ud

4

{
r2− |r

2
A − r2|Λ0(β, κ)

2

}
Udxr

2π

{
−E(κ)

κ

(rA
r

)1/2

+
κ(x2 + 2r2

A + 2r2)K (κ)

4(rAr3)1/2

}
+
Ud

4

{
r2
A−
|r2
A − r2|Λ0(β, κ)

2

}
(A 5)

for [r 6 rA] and [r > rA] respectively. The streamfunction of the total steady flow is
then given by

Ψ (x, r) = 1
2
U∞r

2 +Ψ ′(x, r) . (A 6)

The functions K (κ) and E(κ) are complete elliptic integrals of the first and second
kind respectively and Λ0(β, κ) is Heuman’s Lambda function. Expressions for these
functions are given in Abramowitz & Stegun (1972). The terms κ and β are defined
by

κ =

(
4rAr

(rA + r)2 + x2

)1/2

, β = arcsin

{
x

((rA − r)2 + x2)1/2

}
. (A 7)

Appendix B. Calculation of radial derivative of the drift
We start by writing

X = U∞∆(x, R) = x+

∫ x

−∞

[
U∞

Ux(x′, R)
− 1

]
dx′ , (B 1)

where

Ux(x
′, R) ≡ Ux(x

′, rs(x
′, R)) (B 2)

is the axial flow speed expressed as a function of x′ and R. The partial R-derivative
of the drift function is then written as

∂

∂R
(U∞∆)

∣∣∣∣∣
x

= −
∫ x

−∞

U∞(∂Ux/∂R)(x′, R)[
Ux(x′, R)

]2
dx′ . (B 3)

Using the chain rule, the term in the numerator of the integrand is expressed as

∂Ux

∂R

∣∣∣∣∣
x′

=
∂Ux

∂rs

∣∣∣∣∣
x′

∂rs

∂R

∣∣∣∣∣
x′

. (B 4)

Since we are holding x′ constant, we can then write

∂rs

∂R

∣∣∣∣∣
x′

=
1

(∂/∂rs)(R(x′, rs))
∣∣
x′

=
U∞R(x′, rs)

rsUx(x′, rs)
. (B 5)

To evaluate

∂Ux

∂rs

∣∣∣∣∣
x′

(B 6)

we first write

Ux(x
′, rs) = U∞ + u(x′, rs) , (B 7)
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where u(x′, rs) is given in (A 2), and express u(x′, rs) in the form

u(x′, rs) =

{
r
−3/2
s f(x′, rs) if [r > rA] or [r 6 rA and x < 0]

Ud + r
−3/2
s f(x′, rs) if [r 6 rA and x > 0] .

(B 8)

We then have for x < 0

∂Ux

∂rs

∣∣∣∣∣
x′

= r−3/2
s

∂f

∂rs
− 3

2
r−5/2
s f(x′, rs) , (B 9)

and hence

∂

∂R
(U∞∆)

∣∣∣∣∣
x

= U2
∞ R(x, r)

∫ x

−∞

−r−5/2
s

∂f

∂rs
+ 3

2
r
−7/2
s f(x′, rs)[

U∞ + u(x′, rs)
]3

dx′ . (B 10)

The function ∂f

∂rs
is given by

∂f

∂rs
=

Udx
′

2πU∞

∫ rA

0

1

r
1/2
v

∂ω′1
∂rs

Q
′′

− 1
2
(ω′1) drv

=
Udx

′

2πU∞

∫ rA

0

∫ π/2

0

3(r2
s − r2

v − x′2)
r2
s r

3/2
v

[
x′2 + (rs − rv)2

rsrv
+ 4 sin2 α

]−5/2

dα drv. (B 11)

Appendix C. Calculation of the spectrum of distorted turbulence
The two-point correlation between velocities at positions x, y and with time

difference τ between them is defined to be

Rij(x, y; τ) =
〈
u∗i (x, t) uj(y, t+ τ)

〉
, (C 1)

and by noting that the only statistical quantities in the expression are the components
of u∞, the correlation tensor is then given by (using (2.19))

Rij(x, y; τ) =
1

(2π)6

∫
<3

∫
<3

∫
<3

∫
<3

∞∑
m′=−∞

∞∑
m=−∞

Bm
′∗

ik (x ; k′) Bmjl (y ; k)

× exp

{
−ik′1(X(x)−U∞t)− im′

(
θx − tan−1

(
k′3
k′2

)
+
π

2

)}
× exp

{
ik1(X(y)−U∞(t+ τ)) + im

(
θy − tan−1

(
k3

k2

)
+
π

2

)}
× R∞kl (η) exp(−i(k − k′) · x′ − ik · η) d3k d3k′ d3x′ d3η (C 2)

where θx and θy are the azimuthal components of position vectors x and y respectively,
and R∞kl is the correlation tensor for the upstream, pre-contraction turbulence as
defined in (2.2). The integral over x′ then reduces to (2π)3δ(k − k′), and the integral
over η gives the spectrum of the correlation function S∞kl (k), defined in (2.3). We
are interested in a single point measurement (i.e. x = y), and we Fourier transform
Rij(x, x; τ) to yield the spectrum tensor (averaged over the azimuthal coordinate φ)
in the form

Sij(x;ω) =
4π2

U∞

∫ ∞
0

∞∑
m=−∞

Bmik(x; k) Bmjl (x; k) S∞kl (k) kr dkr , (C 3)
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for our axisymmetric flow geometry. The frequency ω is related to the axial wavenum-
ber kx in the form

ω = kxU∞ . (C 4)

In our axisymmetric geometry where there is no swirl, the azimuthal component of
the basic steady flow is zero everywhere, and therefore the only non-zero components
of Bmij (x; k) are Bmxx, B

m
xr (= Bmrx) and Bmrr . We also note that these terms are all

real (referring back to (2.18) and (2.20)). If we examine the sum over the indices
k, l in (C 3), we observe that only the x- and r-components of S∞kl (k) are required.
Expressions for these terms using the von Kármán model for isotropic free-stream
turbulence are given in (2.4).
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